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A new algorithm is proposed for determining the equilibrium curve on the basis of the knowledge 
of Gibbs' energy of N-component system. A known equilibrium composition is used during 
calculation to estimate the next approximation. The method is also modified for chemical-engi­
neering applications when the composition of coexisting phases to a given overall composition 
is sought (flash calculations). 

The difficulties in calculating the composItIOn of coexisting phases have been one 
of the main hindrances of application of the thermodynamic description to the li­
quid-liquid phase equilibrium. This is as well the reason why up to the present 
appropriate attention has not been paid to this problem. The methods used of cal­
culation of coexisting phases can be divided into three groups: a) non-derivative 
iterative methods, b) methods using the Newton solution of non-linear equations, 
c) methods based on seeking the minimum of Gibbs' energy. 

To the first group pertain the methods proposed by Nulll, Boberg2, Balder and 
coworkers3 . They are very attractive at first sight because they require only a proce­
dure for calculating activity coefficients. On the other hand this advantage is com­
pensated by the need of a higher number of iterations. The methods seeking the 
minimum of Gibbs' energy4 have not found a wider application hitherto even if they 
allow to determine in principle the correct solution. 

The most rapid calculation is achieved by solving the non-linear equations 

In alx) = In alx) , i = 1,2, . . . , N (1) 

by the Newton method, where ai = Xi Yi is the activity of i-th component. The efficiency 
of the Newton method excels especially at a suitable initial estimate of composition 
of coexisting phases. This method is used by Joys, Renon and coworkers6

, Novak 
and coworkers 7 ,8, Magnussen and coworkers 9 . The calculation is rather complicated 
as it requires the calculation of the activity coefficients and also their derivatives with 
respect to composition. These derivatives can be determined either numerically 
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or analytically. The numerical way of calculating extends considerably the calculation 
especially in case of multicomponent systems. 

In applications we meet different types of problems. Let us consider an N-com­
ponent system at a temperature T and pressure P which splits into two liquid phases. 
Such a system has (N - 2) degrees of freedom. In agreement with the type of given 
variables we get different tasks from which the following three will form the object 
of this work: 

1) Calculation of the equilibrium curve or surface for given values of Xl (or x 2 ) 

in ternary system, X I and X z (or X I and X3) in quaternary system, etc. 

2) When calculating the extraction equipment the problem is very important when 
the overall composition WI' Wz, •.. , WN - I is given of a heterogeneous mixture which 
splits into two phases whose composition and relative amount ¢ is to be determined. 
From the material balance we have 

Wi = (1 - ¢) Xi + ¢Xi' i = .1, 2, ... , N - 1 t (2) 

where ¢stands for the number of moles of the phase with composition Xl' X2,···, XN-I 
which is formed from 1 mol of mixture of overall composition WI' W 2 , .•• , WN - l • 

3) The foregoing problem can be modified in such a way that we are to find the 
composition of coexisting phases which corresponds to the overall composition 
of mixture WI' W2, ..• , WN-2 (i.e. the overall composition is given incompletely!) and, 
simultaneously, ¢ mol of the phase of composition Xl' xz, ... , XN-l and (1- ¢) mol of 
the phase of composition Xl' X2, ... , XN- l is to be formed. 

In our calculations we start from the assumption that we know at least one pair 
of compositions of coexisting phases XO = (x~, x~, ... , X~-l) and XO = (x~, x~, ... 
... , X~_l) for the given system. It will be also shown, how it is possible to obtain 
this approximation of composition of coexisting phases in N-component system 
from the knowledge of compositions of coexisting phases in binary heterogeneous 
system which are relatively easily available. 

Determination of Equilibrium Curve 

The system of equilibrium conditions (1) is a system of N equations for 2(N - 1) 
unknown values of mole fractions Xi' Xi' i = 1, 2, ... , N - 1. Let us assume, 
as it has been said in introduction, that the vectors XO and XO are one of solutions 
of system of equations (1). The next solution of this system can be obtained in the 
following way: Let us introduce the designation 

Xi = X? + LlXi, i = 1, 2, ... , N - 1 (3) 
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where the increments Llxi , Llxi, i = 1,2, ... , N - 1 acquire small values, i.e. we seek 
such a solution of system of equations (1) which is not "too" far from the solution 
xo, xo. By expanding the left-hand and right-hand sides of system of equations (1) 
into the Taylor series at the points xo, Xo and neglecting the second and higher 
powers of increments Llxi and Llxi we obtain the system of equations 

N.~ 1 [ 8 In aJxO) A
X
-

j

' _ a In aJxO) A
X
-

j

.] = O. 1 
L., u u i = ,2, ... , N 

j = l OXj OXj 
(4) 

The set dimension of solutions of the system of linear equations (4) is N -' 2. Without 
detriment to generality let us assume that the values Llx2, LlX3, .. . , LlXN - I have been 
chosen fixedly. Then 'by solving system of equations (4) we determine the values 
of remaining increments Llx l , ••. , LlxN - l , Llxl • 

The existence and uniqueness of this solution is ensured by the conditions of ther­
modynamic stability (excepting the cases which will be mentioned in conclusion 
of this chapter). As far as some of calculated increments is too large then it is sufficient 
to multiply all the increments by a reducing parameter 1'/ E <0, 1), for the vectors 
1'/ Llx and 1'/ Llx are also the solution of system of equations (4), even for arbitrary 
11 E (- 00,00) . 

When determining 1'/ we can proceed e.g. in the following way: Let us denote 

N-l N-I 

Sl = J[ L (LlxiYJ, S2 = J[ L (Llxi)2J ' (5) 
i=l i=l 

If S > (j, where (j represents the allowed "step" along the equilibrium curve which 
was usually chosen equal to 0'05, then we have for the reducing parameter 1'/ 

1'/ = (j/S. (6) 

In the opposite case 1'/ = 1. 

Let us designate by the symbols Xl, Xl, the vectors for which hold 

xt = x? + 1'/ Llxi , 

xi = :x? + 1'/ Llxi , i = 1, 2, ... , N - 1 t (7) 

where the increments Llx2 , ••• , LlXN - l are firmly chosen and the other ones are 
determined by the solution of system of equations( 4). The vectors Xl and Xl are then 
the initial approximation of solution of system of equations (1), where the values 
of variables x2 , ••• , XN-I are firmly chosen. System of equations (1) is then a system 

of N equations for N unknowns Xl' ... , XN-l and Xl' 
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Consequently, in the first step of the Newton method we solve the system of N 
linear equations 

for N increments Llx1 , • '" LlXN - 1 and LlX1 • A new approximation of compositions 
of coexisting phases is then determined from the relation 

Xf = xJ + f/ LlXj , j = 1,2, ... , N -1 

xi = x~ + f/ Llx 1 , (9) 

where '1 E (0, 1) is the reducing parameter and the calculation is repeated. In the 
original Newton method, it is always f/ = 1. In the inItial steps of the Newton method, 
however, it can happen that the values of increments are in absolute value too large 
and therefore it is suitable to choose 11 according to Eq. (6). The iteration procedure 
is repeated unless the values of increments are "sufficiently" small. 

After sol~ing system of equations (8) for the firmly chosen values of mole frac­
tions x~ , .. . , X~-l we choose further values of increments LlX2, .. . , LlXN - 1 and by solv­
ing system of equations (4) we obtain a good estimate of the next pair of composi­
tions of coexisting phases and the whole cycle is . repeated. When calculating 
LlX1 , LlX2, "., LlXN - 1 and Llx1 according to Eqs (4) it is convenient to use the already 
obtained intermediate results, for the elements of the matrix of system of equations (4) 
are identical with those of the matrix of system of equations (8) in the last iteration 
step. 

The first two steps along the equilibrium curve are outlined for ternary system 
in Fig. 1. 

The number of iterations needed for solving the system of equations (8) was equal 
to 2 - 3 in the calculations with the maximum step along the equilibrium curve 
S = 0·05 (Eq. (5)) when the condition for finishing the calculation was ILlXd < 10- 4 

for all i . 
System of equations (4) can be solved only in the case that the points XO and XO 

are the inside points of N-component system, i.e. Xi' Xi =f: a holds for all i = 1, 2, ... 
... , N. This condition is not satisfied if e. g. we use the composition of coexisting 
phases of binary system as the initial approximation for calculating the equilibrium 
curve of ternary system. Without detriment to generality let us assume that x~ = 

= x~ = a holds for a component k, k =!= N. Then the value a In ak/aXk in system 
of equations (4) is not finite, for In ak = In X k + In 'l'k holds. Then it is necessary 
to rearrange the corresponding k-th equation of system (4) in the following way: 
Instead of the equilibrium condition In ak(x) = In ak(x) we consider the equivalent 
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condition ali) = alx). It follows from the relation ak = XkYk 

oak(xO) /OXj = oalxO)/oX j = 0, j =l= k 

oak(xO)/Oxk = Yk(XO), oalxO)/oXk = YlxO) , 

1671 

(10) 

where Yk(XO) and Yk(XO) is the limiting activity coefficient of the k-th component. 
It follows from the analogous application of the Taylor series that the k-th equation 
of system (4) is considered in this case in the form 

(11) 

It would be possible to derive easily an analogous equation for k = N. However, 
the condition k =l= N can be always satisfied by exchanging the order of compounds. 

This fact makes it possible that, on the basis of the knowledge of phase composi­
tions in binary system, we can easily estimate the composition of phases in N-com­
ponent system not too distant from this binary system. Or, when knowing the com­
position of phases in three-component system, we can easily estimate the phase 
compositions in four- and more-component system. This possibility is especially 
invaluable in multicomponent systems where determination of the first approxima­
tion of composition is especially complicated. 

The proposed method of calculating the equilibrium curve is very efficient with 
regard to the fact that it ensures a good estimate of equilibrium composition on the 
basis of preceeding point. However, in some isolated cases it can happen that the 
calculation will not converge. According to our experience it can be caused by the 
following facts: 

1) Incorrect variant of calculation. One such case in ternary system is shown in 
Fig. 2. As far as the estimated pairs of coexisting phases are given by the points Xl, Xl and 

I 
f 

f 
! 

x, t 

FIG. ! 

Calculation of equilibrium curve for. a firmly 
chosen value of x 2 
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the system of equations (4) is solved for x~ = const., then we do not find any solu­
tion because the whole line X 2 = x~ li es in the homogeneous region. In such a case 
it is sufficient to choose another variant of solution of Eqs (4), e.g . x1 = const. or, 
which is simplest, to exchange both phases and to solve the variant x2 = const. 

2) Thermodynamic instability of some of phases. The determinant of system of 
equations (8), DB . 

a In alx) a In alx) a In al(x) a In atCx) 
oX l OX2 OX N - l oX l 

a In az(x) a In a2(x) 
oX l OX l 

DB = (12) 

a In aN-l~2 a In aN -l(x) 
OX l OX l 

a In aN(X) ~ aN(x) ~aN(~ a In aN(x) 
OX l OX 2 OXN-l OX1 

is rearranged in this way: The i-th row (i = 1,2, ... , N) of the matrix is multiplied 
by the value Xi' The other rows are added to the last row of the matrix so formed. 
On using the Gibbs-Duhem equation we get 

x, 

N 

DB = -(Da(xN) L Xi a In a{x)(ox l = 
i = 1 

N 

- (D./xN) L (Xi - Xi) a In ai(X)/OX l , (13) 
j=t 

X, 

FIG. 2 

Illustration of an incorrect variant of solution 
of system of equations (1) in a ternary system 
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where 

a In aN -I(.X) 
aXN-l 

1673 

(14) 

By means of the determinant D., the thermodynamic stability of the first phase is 
defined by the relation 1o

•
1l 

Da> O. (15) 

The equation 

Da = 0 (16) 

defines a so-called spinodal surface (in ternary system at constant temperature 
and pressure, spinodal curve - see Fig. 3), which, in a stable two-phase system, 

x, 

x, 

FIG. 3 

The course of binodal (--) and spinodal 
(-----) curves in a ternary system; K critical 
point 
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The course of equilibrium curve with a con­
cave part 
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lies inside the binodal surface (curve) which is defined by system of equations (1). 
It is evident that, if we include the points of spinodal surface into the calculation, 
the matrix of system of equations (8) is singular. When crossing the spinodal surface 
or curve, the increments change their sign. In case of binary system it is possible 
to show easily that, on using the points which do not meet condition (15), the cal­
culation will converge to the trivial solution x = x. We assume that the same will 
hold also in multicomponent systems. Therefore we recommend to check the signs 
of Da for both phases during calculation. As soon as condition (15) is not fulfilled, 
it can be most likely from these reasons: a) A part of binodal curve exhibits concave 
course (Fig. 4). When estimating next point Xl and Xl we get deep into the hetero­
geneous region and it is necessary to reduce the allowed step b along the equilibrium 
surface. 

b) The two-phase region is overlapped by the three-phase one. The last points 
of calculated binodal curve (A, B in Fig. 5) belong alrllady to the metastable two-phase 
region which is overlapped by a more stable three-phase region. On the other hand, 
this fact is an invaluable advantage of this procedure because it allows to disclose 
the existence of three-phase region. 

c) The caiculation will also not converge in a certain vicinity of the critical point 
owing to the rounding errors. It is evident from Eq. (12) that in the vicinity of the 
critical point the determinant of system (8), D s, approaches zero not only since the 
value of Ds falls to zero but also the difference in composition of both phases limits 
to zero. However, in spite of it we can get relatively close to the critical point when 
using multiple precision. 

Calculation of Composition of Coexisting Phases for a Given Overall Composi­
tion of Heterogeneous Mixture (Flash Calculations) 

Let the overall composition of heterogeneous mixture W = (WI' W2> •.. , WN - I ) be 
given. The equations of material balance have the vectorial record 

(1 - 4» x + 4>x = W, (17) 

where 4> E <0, I). Therefore we seek the composition of such a pair of coexisting 
phases whose tie-line goes through the point w. The equilibrium conditions and the 
equations of material balance take then the form 

In ali) = In 'alx) , i = 1,2, ... , N 

(1 - 4» Xj + cjJXj = wj ' j = 1,2, ... , N - 1 (18) 
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The system of non-linear equations (18) is a system of (2N - 1) equations for 
(2N - 1) unknowns Xi' Xi' i = 1,2, "" N - 1, and for the parameter <P, We assume 
again that we know the values of initial approximation of composition of coexisting 
phases xo, xo, The equations of material balance can be rearranged into the form 

which has arisen so that the parameter <p has been expressed from the first equation 
of system (17) and its value has been inserted into the remaining equations of material 
balance, Henceforth we will use Eqs (19) in the form 

From the relations 

Xi = x? + ~Xi' i = 1, 2, "" N - 1 

follows that the equations of material balance (20) can be expressed in the form 

(CX i + ~Xi - ~xJ (131 - ~Xl) - (f3i - ~Xi)(CXl + dX1 - ~Xl) = 0, 

i = 2, 3, "" N - 1 , 

where we have designated 

CX i = x? - X?, f3i = Wi - X?, i = 1, 2, "" N - 1 

FIG, S 

Overlapping of two-phase region by a three­
phase region 

Xl 
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By mUltiplying the parentheses in Eq. (22) and neglecting the increments of the second 
order we obtain 

Pl AXi + (a 1 - PJ) AXi - Pi AXl - (a i - Pi) AXl = Pi(J.l - (J.iPl • 

i = 2, 3, ... , N - 1 (24) 

By replacing the equilibrium conditions (1) by the Taylor series at the points xo, XO 
and neglecting the second and higher powers of increments Ax i , Ax i , i = 1,2, ... , 
N - 1 we get the system of linear equations 

i = 1,2, ... , N (25) 

By combining systems of equations (24) and (25) we o'btain a linear system of(2N - 2) 
equations for (2N - 2) unknown increments AXi, Ax;. 

Since the values of initial approximation XO and XO can differ significantly from the 
solution of ~ystem of equations (18), it is necessary, at least in several initial iteration 
steps of the Newton method, to use the reducing parameter 11 (Eqs (5) and (6)). 

Further it is possible to proceed in two ways: In the first variant (henceforth 
designated as VI) we obtain a new approximation of equilibrium composition of co-

FIG. 6 

I 

x, l ~ 
I 

I 

.1 
I 
I 

x, 

Schematic outline of the procedure of calculating the coexisting phases for a given overall system 
composition. a) variant VI, b) variant V2 
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existing phases Xl, Xl by inserting into Eqs (7) after determining ~Xi' ~Xi' i = 1,2, . .. 
... , N - 1, from systems of equations (24) and (25). With this approximation of com­
position we solve system of equations (1), e.g: for chosen values X2, ... , XN - l as in the 
first part. The calculated compositions are used as a new approximation XO and XO 
for the next step. 

In the second variant (V2) we start all the time from systems of equations (24) and 
(25) and do not return on the equilibrium surface (but doing so we use all the time 
the reducing parameter which is determined by Eq. (6)). The diifnence between 
both the procedures in a ternary system is shown in Fig. 6. 

On comparing these two variants it is possible to say that the first one will be more 
reliable even though slower (after each step on the equilibrium surface it is necessary 
to solve completely system of equations (1)). However, using sufficien,tly low <5, 
this variant fails (if it is not too far from w) only in the cases when the method de­
scribed in the foregoing part fails, too (unsuitable numbering of components, concave 
segments on the equilibrium surface, close occurrence of three-phase region, rounding 
errors in the vicinity of critical point). On the other hand, the variant V2 will be 
much more rapid but it can be recommended just only for "smooth" equilibrium curves 
or surfaces. Before using it we recommend to make sure of its applicability fo~ the 
given system. 

Convergence of the Newton method is always subject to a factor of uncertainty 
and therefore as the most sure we recommend the following third variant (V3). This 
variant can be especially advantageous in the case when the vector w is "very" 

far from conode xo, xo. The convergence can be ensured if we proceed in the following 
way: 

a) We construct the line segment w, Wo whose one end point is the point wand the 

second one a hitherto particularly undetermined point Wo on the line segment xo, XO -
see Fig. 7. The construction of .the point WO will be explained later. b) On the line 

segment w, WO , for the points ( of which holds ( = (1 - cp) WO + cpw, where 
cp E <0, I ), we choose M equidistant points Wl, w2

, • .. , wM
. If e.g. M = 9 is chosen 

(and consequently the parameter cp takes gradually the values 0'1,0'2, ... ,0'9) we 

have 
wl = 0'9wo + O'lw, 

w2 = 0'8IVo + 0'2w , 

(26) 

c) Let us solve first the system of non-linear equations (1S) where, however, the 
point w will be replaced by Wi. The solution obtained will then be used as the initial 
approximation for solving the system of non-linear equations (1S) , where the point w 
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is substituted by the point w2
, etc. It is evident that a sufficiently large value of M 

guarantees the convergence of numerical process. During practical calculations we pro­
ceed so that we choose such M, M ~ 0, that the distance of adjoining points should 
not be larger than e.g. 0·05. Since the initial approximation in the given procedure 
is very close to the true solution, it is possible to use the modified Newton method. 

The coordinates of the point Wo are best chosen so that the line segment w, Wo 

should be normal to the line segment xo, xo, i.e. the point Wo should exhibit the 

shortest distance from point w of all the points of line segment iO, rO. For the point 
WO holds 

(27) 

where ¢o is a number from the interval (0, 1). Let us construct the function 

N-1 N-1 

f(¢o) = L(w; - w?Y = L [Wi - (l-' ¢o)X? - ¢ox?Y (28) 
i=1 i=1 

which gives square of the distance of point w from point woo From the condition 

df Jd¢o= ° follows 

N-l N-1 

¢o = L (x? - w;)(x? - r?)J L (x? - X?)2. (29) 
i=1 i=1 

By inserting this value of ¢o into Eq. (27) we obtain the point woo As far as we get 
¢o < ° or ¢o > 1, then we choose WO = XO or WO = xO, respectively. 

In the calculation procedure proposed we have eliminated the parameter ¢ in system 
of equations (18) and solved the system of 2(N - 1) equations for 2(N - 1) un­
known mole fractions. Thus, an attractive possibility offers to reduce further the 
number of equations (variant V4). From equations of material balance (17) follows 

Xi = wd¢ - [(1 - ¢)NJ Xi' i = 1,2, ... , N - 1 (30) 

If we insert this relation into the equilibrium conditions, we obtain 

In ai(x) = In aj(wN - [(1 - ¢)NJ x), i = 1,2, ... , N (31) 

which is a system of N equations only for N unknowns ¢, Xi' i = 1, 2, ... , N - 1. 
However, the determination of initial approximation of parameter ¢ is a problem 

in the case when w is "very" far from the line segment xo, xO. When we proceed 
during calculation by the method of constructing the points wi, w2

, ••• , the solution 
of system of equations (31) is simple. In the first step (i.e. w = w1

) we should deter-
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mine the value CPo according to Eq. (29) (where Wi = wD as an initial approximation 
of parameter cp , in the second step w = w2 , etc. For numerical reasons it is suitable 
to choose the order of phases so that cp < 0·5, for the parameter cp occurs in the 
denominator on the right-hand side of Eq. (30). 

In conclusion of this part we would like to draw attention to the fact that according 
to the establishment of point w, three cases can occur which are shown for ternary 
system in Fig. 8: 

A) The given overall composition lies inside the heterogeneous region (point A 
in Fig. 8). In this case 

o<CP<l. (32) 

B) The given overall composition lies in the homogeneous region but there exists 
at least one tie-line which goes through this point (point B in Fig. 8). In this case 
the calculated cp meets the condition 

cp ¢ <0,1 ) . (33) 

c) The given point lies in the homogeneous region and no tie-line goes through it. 
In this case the calculation converges to the trivial solution x = x. 

X2 

w 

FIG. 7 

The course of line segments :xo, Xo and wo, w 
in a ternary system 
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Solvability of the problem of calculating the 
coexisting phases for a given overall system 
composition 
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Calculation of Equilibrium Composition of Phases when the Incomplete 

Overall Composition (W1' w2, ... , WN - 2 ) and the Relative Amount 
of Phases Are Given 

The problem for a ternary system is outlined in Fig. 9 and can be formulated as fol­
lows: Determine the, vector of overall composition (and composition of coexisting 
phases corresponding to it) of a ternary system so that the first component of this 
vector should be equal to W1 and the relative amount of the first phase should be 
(1 - cp). 

The algorithm of solution of this problem in a general N-component two-phase 
system is relatively simple. From the equilibrium conditions (I) and the first (N - 2) 
equations of material balance (2), we form a system of equations 

In alx) = In aJx) , i = 1, 2, ... , N 

(1 - cp) Xi + CPXi = Wi' i = 1, 2, ... , N - 2 (34) 

which is a system of 2(N - 1) equations for 2(N - 1) unknown values of mole 
fractions Xi' Xi' i = 1,2, ... , N - 1. Then we determine the value of WN-1 from the 
found solution of system of equations (34) and from the last equation of material 
balance 

(35) 

System of equations (34) is solved by the Newton method with reducing parameter 
11. From Eq. (21) follows 

(1 - cp) (x? + L\xJ + cp(x? + L\x i ) = Wi' i = 1, 2, ... , N - 2. (36) 

x, 

x, 

FIG. 9 

Calculation of composition of coexisting 
phases for an incompletely given overall 
system composition 
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By combining systems of equations (25) and (36) , a system of 2(N - 1) equations 
for 2(N - 1) increments L1x i , L1x i , i = 1, 2, .. . , N - 1 is formed. To calculate 
a new approximation of equilibrium composition of both phases, the reducing pa­
rameter is again used in the same way as in foregoing chapter. The calculation is carried 
out till the values of increments are "sufficiently" small. 

As well as in the previous chapter mentioned, even in this case we can meet with 
the problems of convergence of the Newton method if the initial approximation 
xo, Xo is not "sufficiently" close to the solution of system of equations (34). Also 
in this case we can use the procedure as in previous chapter. First we determine the 
values w?, i = 1,2, ... , N - 1 from the relation: 

(1 - cjJ)x? + cjJx? = w? i = 1,2, ... , N - 2. (37) 

The points w = (WI ' Wz, ... , wN - Z) and WO = (w~, w~ , ... , w~-z) are connected byaline 

segment. M equidistand points wI, w2
, •.• , wM are chosen on the line segment w, WO 

for points ( of which holds ( = (1 - cp) WO + ({Jw , ffJ E <0, 1) . Then it holds 

(38) 

where 0 < CPI < ({Jz < ... < ({JM < 1. Let us solve first system of equations (34) 
where, however, the values Wi' i = 1,2, . . . , N - 2 are replaced by the values w:. 
The vectors XO and Xo are used as the initial approximation. · The solution obtained 
is then used as the initial approximation for solving the same system of equations 
where the values Wi are replaced by the values wf, i = 1,2, ... , N - 2, etc. It is 
again evident that a sufficiently large value of M guarantees the convergence of nume­
rical procedure. In practical calculations we usually proceed so that the distance 
of two neighbouring points wk and wk + I is chosen e.g. 0·05. Just as in foregoing 
chapter we can use here the modified Newton method, too. 

CONCLUSION 

A new method for calculating the equilibrium curve is proposed whose principle 
consists in using the values of thermodynamic functions of preceeding calculated 
pair of compositions of coexisting phases for estimating the next pair of composi­
tions of coexisting phases. 

Besides, the relations are derived which enable to estimate the equilibrium com­
position in N-component system on the basis of knowledge of composition of co­
existing phases in binary system only. 

In the second part four variants of calculating the coexisting phases for a given 
overall composition (flash calculations) are proposed which are important in chemi-
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cal-engineering practice. Each of these variants has certain advantages, the most 
reliable being probably the variant V3, the most rapid the variant V2. These methods 
have not only a direct chemical-engineering application but can also be employed 
when determining the parameters according to the procedure proposed by Varhegyi 
and Eon12

. 

Direct comparison of the method proposed here and those reported in the litera­
ture1 

- 9 was not carried out because each one has its specific properties and choice 
of the most suitable method depends on the system, type of problem, computer used, 
accuracy required, etc. However, it is evident from an a priori comparison that the 
method proposed here is better than that proposed previously (but the differences 
disappear in the cases when the slopes of tie-lines change only little). In case of ternary 
systems and calculations of equilibrium curve, the procedures by JoyS and Magnussen 
and coworkers9 are probably somewhat more advantageous, however, the procedure 
proposed . here can easily be applied to multicompopent systems and can easily be 
modified to be used in flash calculations. 

In Appendix the relations for activity coefficients and their derivatives for the 
most common empirical and semi-empirical equations are given. The relations for 
the Redlich-Kister equation have already been published7

• 

APPENDIX 

Relations for Q = GE/(RT), In Ya and 8 1n Ya /8xb of some empirical and semi-empirical equations 

1) Wilson Modified Equation13 ,14 

Aki =l= A ik• bki = bik parameters characterizing the binary system i-k (Aji = Akk = 1, bkk = 
= bii = 0) 

N N N N N 
Q = - I Xk In I xjAkj + (1/2) I I xkxAi = I:Xk In Sk + 

k=l i=l k=l i=l k=1 
N 

+ (1/2) I xkRk , 
k=1 

N N 

Sk = L xiAki , Rk = Lxibki , 
i=1 i= 1 

N N 

In Yo = 1 - In Sa - L xkAka/Sk + Ra - (1/2) I xkRk , 
k=l k=l 

N 

8 In 'l'a/8Xb = - A.b/Sa - Aba/Sb + AaN/S. + ANajSN + I [XkAka(Akb - AkN)/S~J 
k=1 

a = 1, 2, ... , N, b = 1, 2, ... , N - 1 . 
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2) NR TL Equation 15 

'ik =F 'ki' (Xik = (Xki parameters characterizing the binary system i- k ('ii = 'kk = 0) 

N N N N 

Q = I [Xk I Xi'ikGik/ I XiGik] = I XkCk/lk , 
k=1 i=1 i=1 k=1 

N N 

Gik = exp (-lXik'ik)' Ck = I Xi'ikGik' J k = I XiGik , 
i=1 i= 1 

N 

In Y. = Ca!Ja + I xkGak['ak - CkIJk]!1k , 
k=1 

a In Ya/aXb = ('baGba - 'NaGNa)/Ja - Ca(Gba - GNa)/l; + 

+ Gab('ab - Cb)/J~ - GaN('aN - CN)IJ~ + 
N 

+ I XkGak['NkGNk - 'bkGbk + 2(Gbk - GNk) (Ck - 'ak)fJn, 
k=1 

a = 1,2, "" N, b = ],2, "" N - 1 , 

3) UNIQUAC Equation16 

1683 

r i , qi parameters characterizing the volume and surface of component i, AUik =F AUki parameters 
characterizing the binary system i- k, (Allii = AUkk = 0), z = 10 (coordination number) 

N 

Q = I xk{In (¢k/Xk) + (z/2) qk In (ek/¢k) - qk In Sk} , 
k = l 

N N 

r = I xiri , q = I xiqi, ¢k = xkrk!r, ek = Xkqk!q , 
i=1 i =1 

N 

'ik = exp [ -L1U ik /(RT)], Sk = I ei'ik, 
i=1 

In Ya = 1 - ¢a/xa + In (¢a/xa) + (z/2) qa[In (ea/xa) + ¢a/e. - 1] + 
N 

+ qa[l - In Sa - I ek'ak/Sk] , 
k=1 

a In Ya/axb = ¢N/XN - ¢b/Xb - ¢a¢N/(XaXN) + ¢a¢b/(X.Xb) + 

+ (z/2) qa(l - ¢a/ea) [(¢b - eb)/Xb + (eN - ¢N)/XN] + 
N 

+ (qa/q) {qb[l - 'baiS. - 'ab/Sb + I ei'ai'bdS~] -
i;:::l 

N 

- qN[l - 'Na/Sa - 'aN/SN + I ei'ai'N;/Sn} , 
i=1 

a = 1, 2, "" N, b = 1, 2, "" N - 1 , 
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4) Group-Contribution Method UNIFAC9 ,17 

N number of components in system, NG number of groups in system; R i , Qi volume and surface 
of group i; rk , qk volume and surface of molecule of component k; vik number of groups j in mole­
cule k; aij =1= aji group interaction parameters characteristic of groups j- j, (a ii = ajj = 0), 
z = 10 (coordination number) 

NO 

rk = L VikR i , 
i= 1 

N 

NO 

qk = L VikQi, 
i=1 

N 

RI j = rj/( L Xiri) , QI j = qj/( L Xiqi) , 
i=1 i= 1 

NO 

Gjl< = QIjVjk' 'ji = exp (-ajJT), Sik = L Gjk'jl' 
j=1 

N N 

e i = LxjGij , lIi = LXjSij , 
j=1 j=1 

In Ya = 1 - RIa + In RIa + q,{l - In QIa - (z/2) [1 - RIa!Q1a + 
NO 

+ In (RIa/QIa)]} - L [e iSi.!lIi - Gia In (Sia!lIi)] , 
i=l 

o In Y.loxb = -(RIb - RIN ) (1 - RIa) + q.(QIb - QIN) -

- (z/2) qa[RIb - RIN - (QIb - QIN)] (RI./Q1a - 1) + 
NO 

- L [Sia(Gib - GiN) + (Sib - SiN) (Gia - Siae;{lIi)]/1l;, 
i=1 

a = 1,2, "" N, b = 1, 2, "" N - 1 , 

5) Group-Contribution Method ASOG18 

N number of components in system, NG number of groups in system; VkH number of atoms (dif­
ferent from hydrogen) in molecule of component k; vik number of atoms (different from hydrogen) 
in group i of molecule of component k ; aij =!= aji group interaction parameters characteristic 
of the groups i- j (a i i = ajj = 0) 

NO 

r k = L Vik , 
i=1 

NO 

Sik = L aijv jk , 
j=1 

NO 

N 

q = L XkV~H, 
k=1 

N N 

e i = L XkVik ,1Ii = L XkSik , 
k= 1 k= 1 

- L{vi.[ln(lI;/Sia) - 1]+ e iSia/I1;}' 
i=1 
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NO 

- I [(Sib - SiN)(Vi. - ei Si.!I7J +SjVib - ViN)!I7J, 
i=l 

a = 1, 2, ... , N , b = 1, 2, .. . , N - 1 . 
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